

- Brian J. S., Anna M. D. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. *Immunol. Rev.*, 2015, 268, 222-235.
- Hu Y.-Q., Liu S.-S., Liu P., et al. Clinical relevance of eosinophils, basophils, serum total IgE level, allergen-specific IgE, and clinical features in atopic dermatitis. *J. Clin. Lab. Anal.*, 2020, 00:e23214.
- Qiu C.-H., Zhong L.-H., Huang C.-X., et al. Cell-bound IgE and plasma IgE as a combined clinical diagnostic indicator for allergic patients. *Scientific Reports*, 2020, 10:4700.
- Rifat K., Evrim B., Lokman U., et al. Correlation of symptoms with total IgE and specific IgE levels in patients presenting with allergic rhinitis. *Ther. Adv. Respir. Dis.*, 2013, 7, 75-79.
- Aharon K., Wissam H., Ellen B., et al. Elevated Serum Total IgE-A Potential Marker for Severe Chronic Urticaria. *Int. Arch. Allergy Immunol.*, 2010, 153, 288-293.

19. TROUBLE SHOOTING CHART

PROBLEM	POSSIBLE CAUSE	SOLUTION
1. Controls out of validation limit	a) Controls/ Calibrator deterioration due to improper storage or used after expiry.	Ensure calibration is done after 15 days and use controls/ Calibrator within 30 days once opened and check storage temp. It should be 2-8°C.
	b) Cross contamination of Controls	Pipette carefully and do not interchange caps.
	c) Reagents deterioration to improper storage or used after expiry.	Use reagents within 30 days once opened and Check storage temp. It should be 2-8°C.
	d) Magnetic microsphere are not properly mixed before loading in the analyzer.	Ensure proper mixing of bottle containing microparticles by gentle shaking/inversion before use.
2) High Anti-IgE test results	a) Use of turbid, lipaemic or hemolyzed sample.	Use clear fresh sample. Refer test specimen collection, handling and processing for more details.
	b) Sample position is wrongly defined while loading the sample details in analyzer.	check the sample position and run the test meticulously.
	c) Magnetic microsphere are not properly mixed before loading in the analyzer.	Ensure proper mixing of bottle containing microparticles by gentle shaking/inversion before use.
	d) Wrong Sample identification	Make sample I.D. at the time of sample Collection.
3) Low Anti-IgE test results	a) Sample deterioration due to improper Storage or microbially contaminated sample.	Use clear fresh sample immediately after collection. Refer Specimen collection, and handling processing for more details.
	b) Sample position is wrongly defined while loading the sample details in analyzer.	check the sample position and run the test meticulously.
	c) Magnetic microsphere are not properly mixed before loading in the analyzer.	Ensure proper mixing of bottle containing microparticles by gentle shaking/inversion before use.
	d) Wrong sample identification.	Mark the sample I.D. at the time of sample collection.

in vitro diagnostic Reagent, not for medicinal use

J. MITRA & CO. PVT. LTD.

A 180-181, Okhla Indl. Area, Phase-1, New Delhi-110 020, INDIA
Ph: +91-11-47130300, 47130500
e-mail: jmitra@jmitra.co.in Internet: www.jmitra.co.in

VER-01 R-01
MCIAU12
Rev. Date: Jan. 26

Anti-IgE iClia

Chemiluminescence Immunoassay for the quantitatively detect the concentration of total IgE antibodies in human serum

6. KIT & ITS COMPONENTS

COMPONENT	DESCRIPTION
Microparticle Buffer (RA)	Magnetic microparticles coated with Anti-IgE antibodies with preservatives.
Assay Buffer (RB)	Buffer containing protein stabilizers & antimicrobial agents as preservative.
AE Conjugate (RD)	Anti-IgE antibodies linked to acridinium ester with protein stabilizers.
Calibrator-1 (C0)	Low concentration of IgE Antibody containing preservatives. *RTU
Calibrator-2 (C1)	High concentration of IgE Antibody containing preservatives. *RTU
Control-1 (Q1)	Low concentration of IgE Antibody containing preservatives. *RTU
Control-2 (Q2)	High concentration of IgE Antibody containing preservatives. *RTU
Reagent Plugs	Silicon caps to cover the opened reagents.

1. INTRODUCTION

IgE is a type of immunoglobulin discovered in 1966 with a molecular weight of 188kD. The content of IgE in serum is extremely low, accounting for only 0.002% of the total Ig in serum. It is synthesized late in the ontogeny. IgE is mainly produced by plasma cells in the lamina propria of the mucosa, such as the nasopharynx, tonsils, bronchi, and gastrointestinal tract. These parts are often the places where allergen invasion and type I allergies occur. IgE is a cytophilic antibody, the functional regions of C2 and C3 can bind to the high-affinity FcRI on the membranes of basophils and mast cells. When the allergen re-enters the body, it binds to IgE that has been fixed on basophils and mast cells, which can cause type I allergic reactions. The detection of total IgE can be used to assist in the diagnosis of allergic asthma, seasonal allergic rhinitis, atopic dermatitis, drug-induced interstitial pneumonia, bronchopulmonary aspergillosis, leprosy, pemphigoid and certain parasitic infections.

Commonly used methods to detect total IgE in clinic include fluorescence immunoassay, enzyme-linked immunoassay (ELISA), chemiluminescence immunoassay (CLIA).

2. INTENDED USE

Anti-IgE iCLIA is used to quantitatively detect the concentration of total IgE antibodies in human serum samples in vitro, and is mainly used clinically for auxiliary diagnosis of human allergic reaction states. This kit is only operational in conjunction with J. Mitra CLIA Analyzer.

3. PRINCIPLE

Anti-IgE iClia is chemiluminescent immunoassay based on the "Sandwich" principle. The magnetic microspheres are coated with Anti-IgE antibodies.

The samples are added in the assay cup containing anti-IgE antibodies coated microspheres followed by addition of AE conjugate (another Anti-IgE antibodies linked to acridinium ester) to assay cup. A sandwich complex is formed wherein IgE (from serum sample) is "trapped" or "sandwiched" between the microspheres coated antibody and antibody labelled with AE conjugate. Unbound conjugate is then washed off with wash buffer. The amount of bound AE conjugate is proportional to the concentration of IgE present in the sample. Finally, pre-trigger and trigger solution containing hydrogen peroxide and sodium hydroxide solution is added to the reaction mixture. The resulting chemiluminescent reaction is measured as relative Light units (RLUs). There is a direct relationship between the amount of IgE present in the sample and the RLUs detected by the optical system. Results are calculated automatically based on the established calibration curve and IgE concentration in the sample is expressed as IU/ml.

4. DESCRIPTION OF SYMBOLS USED

The following are graphical symbols used in or found on J. Mitra diagnostic products and packing. These symbols are the most common ones appearing on medical devices and their packing. They are explained in more detail in European Standard EN ISO 15223-1:2021.

	Manufactured By		In vitro diagnostic medical device
	No. of tests		Instruction for use
	Lot Number		Temperature Limitation
	Manufacturing Date		Caution, see instruction for use
	Expiry Date		Catalogue Number
	Keep away from sunlight		Do not use if package is damaged
	Contains biological Material of Human Origin		Contains biological Material of Animal Origin
	Country of Manufacture		Keep Dry

5. KIT PRESENTATION

- 50 Tests
- 100 Tests

7. STORAGE AND STABILITY

The kit should be stored at 2-8°C in the cool and driest area available. Expiry date on the kit indicates the date beyond which kit and its components should not be used. **Once the kit is opened, onboard stability of reagents, calibrator and control is 30 days at 2-8°C.**

8. ADDITIONAL MATERIAL AND INSTRUMENTS REQUIRED

- Pre-Trigger Solution: Hydrogen peroxide solution.
- Trigger Solution: Sodium hydroxide solution.
- Wash Buffer: Phosphate buffered saline solution with surfactant.
- Assay Cup
- J. Mitra CLIA Analyzer

All materials and analyzer to be used for running the Anti-IgE iClia shall be from J. Mitra & Co. Pvt. Ltd.

9. SPECIMEN COLLECTION & HANDLING

- Only human serum or plasma samples should be used for the test.
- For serum collection use serum vacutainer. While preparing serum samples, remove the serum from the clot as soon as possible to avoid hemolysis. Fresh serum/plasma samples are preferred.
- Specimens should be free of microbial contamination and may be stored at 2-8°C for one week, or frozen at -20°C or lower. Avoid repeated freezing and thawing.
- Do not use heat inactivated samples as their use may give false results. Hemolyzed and Icteric hyperlipemic samples may give erroneous results.
- Serum specimens from patients receiving anticoagulant or thrombolytic therapy may contain fibrin due to incomplete clot formation.
- Always use clear specimens. Centrifuge viscous/ thick or turbid specimen at 10,000 RPM for 15 minutes prior to use to avoid inconsistent result.
- Use of disposable pipettes or pipette tips is recommended to prevent cross contamination.

10. SPECIMEN PROCESSING

(A) FROZEN SAMPLE

Anti-IgE iClia test is best used with fresh samples that have not been frozen and thawed. However most frozen samples will perform well if the procedure suggested below is followed.

Allow the frozen sample to thaw in a vertical position in the rack. Do not shake the sample. This allows particles to settle to the bottom. Centrifuge the sample at 10,000

rpm for 15 minutes.

(B) TRANSPORTATION

If the specimen is to be transported, it should be packed in compliance with the current Government regulations regarding transport of aetiological agents.

11. WARNING & PRECAUTION

CAUTION: THIS KIT CONTAINS MATERIALS OF HUMAN ORIGIN. NO TEST METHOD CAN OFFER COMPLETE ASSURANCE THAT HUMAN BLOOD PRODUCTS WILL NOT TRANSMIT INFECTION. NEGATIVE CONTROL, POSITIVE CONTROL & ALL THE SAMPLES TO BE TESTED SHOULD BE HANDLED AS THOUGH CAPABLE OF TRANSMITTING INFECTION.

1. The use of disposable gloves and proper biohazardous clothing is STRONGLY RECOMMENDED while running the test.
2. In case there is a cut or wound in hand, DO NOT PERFORM THE TEST.
3. Do not smoke, drink or eat in areas where specimens or kit reagents are being handled.
4. Tests are for in vitro diagnostic use only and should be run by competent person only.
5. Do not pipette by mouth.
6. All materials used in the assay and samples should be decontaminated in 5% sodium hypochlorite solution for 30-60 min. before disposal or by autoclaving at 121°C at 15psi for 60 minutes. Do not autoclave materials or solution containing sodium hypochlorite. They should be disposed off in accordance with established safety procedures.
7. Wash hands thoroughly with soap or any suitable detergent, after the use of the kit. Consult a physician immediately in case of accident or contact with eyes, in the event that contaminated material are ingested or come in contact with skin puncture or wounds.
8. Spills should be decontaminated promptly with Sodium Hypochlorite or any other suitable disinfectant.

12. PRECAUTIONS FOR USE & REAGENT HANDLING

1. Do not use kit components beyond the expiration date which is printed on the kit.
2. Store the reagents & samples at 2-8°C.
3. Do not pool reagents from within a batch or between different batches, as they are optimised for individual batch to give best results.
4. Before loading the reagent kit in the clia analyzer for the first time, ensure proper mixing of microparticle bottle to resuspend microparticles that may have settled during transport or storage.
5. Once reagents are opened, reagent plug must be used to prevent reagent evaporation and contamination and to ensure reagent integrity. Reliability of assay results cannot be guaranteed if reagent plugs are not used according to the instructions given.
6. Mark the test specimen with patient's name or identification number. Improper identification may lead to wrong result reporting.
7. To avoid contamination, wear clean gloves when placing a reagent plug on an uncapped reagent bottle.
8. Once a reagent plug has been placed on an open reagent bottle, do not invert the bottle as this will result in reagent leakage and may compromise assay results.
9. Reagents may be stored on or off the Chemiluminescence immunoassay analyzer. If reagents are removed from the analyzer, store them at 2-8°C (with Reagent plugs) in an upright position. For reagents stored off the system, it is recommended that they should be stored in their original trays and boxes to ensure they remain upright. If the microparticle bottle does not remain upright (with a Reagent plugs placed) while in refrigerated storage off the system, the reagent kit must be discarded.
10. Run control-1 & control-2 in each assay to evaluate validity of the kit.
11. Distilled or deionised water must be used for wash buffer preparation.
12. Avoid strong light exposure during the assay.
13. In case of any doubt the run should be repeated.

13. TEST PROCEDURE

Assay Procedure

1. Refer to the Clia Analyzer user manual for detailed information on preparing the analyzer.
2. Before loading the Anti-IgE iClia reagent kit on the analyzer for the first time, mix contents of the microparticle bottle to resuspend microspheres that may have settled during transportation/ storage. Once the microspheres have been loaded, no further mixing is required.

Important Note: Swirl the microparticle (RA) bottle 30 times. Visually inspect the bottle to ensure microspheres are resuspended. If microspheres are still adhered to the bottle, continue to Swirl the bottle until the microspheres have been completely resuspended. If the microspheres do not resuspend, DO NOT USE. Once the microspheres have been resuspended, remove the cap and place the reagent plug on the bottle to make it ready to use. Remove the cap of (RA), (RB) and (RD) bottles and place the reagent plugs before use as follow:

(RA) & (RB) : Natural color plug

(RD) : Brown color plug

3. Load the Anti-IgE iClia reagent kit on the Chemiluminescence immunoassay analyzer.
4. Verify that all necessary reagents are available in the reagent tray.
5. Ensure that adequate sample volume (not less than 250 μ L) is present in sample tube prior to running the test.
6. Sample volume required for each additional test from same sample tube is 50 μ L.
7. Ensure sample positions are properly define at the time of loading in the analyzer.
8. The Anti-IgE test-specific parameters are stored in barcode placed on the reagent tray and read through barcode reader. In cases, the barcode cannot be read, contact customer support at: 011-47130300, 500 or write us at: jmitra@jmitra.co.in.
9. Mix Anti-IgE iClia calibrators and controls by gentle inversion before use. Open the cap and place the calibrator-1, calibrator-2, control-1 and control-2 vials into each respective sample positions. Read the barcode for calibrator and controls provided with the kit.
10. Run calibration as mentioned in heading calibration below.
11. Press Run. The test result for first sample will be obtained at 31 minutes.
12. The Chemiluminescence immunoassay analyzer performs all the functions automatically and calculates the results.

Calibration

1. Every Anti-IgE iClia kit has a two-dimension code label containing the predefined master curve of the particular reagent lot.
2. Test both the Calibrators in triplicate. Both control-1 and control-2 must be tested in each run to evaluate the assay calibration. Ensure that controls values are within the validity range specified in the Anti-IgE iClia QC data sheet.
3. Once calibration is accepted (within range) and stored, all subsequent samples may be tested without further calibration unless:
4. Recalibrate the analyzer in following conditions:
 - a) After each exchange/use of new lot (Test reagent and Pre-trigger/ Trigger solution/wash buffer).
 - b) Every 15 days or at the time of any component to be changed.
 - c) Controls are out of validation range.
 - d) Required by pertinent regulations.
 - e) After specified service procedures have been performed or maintenance to critical part or subsystems that might influence the performance of the Anti-IgE iClia.

14. RESULT CALCULATION:

The analyzer automatically calculates the concentrations of each sample. The results are given in IU/ml.

a) RESULT INTERPRETATION

- The test results of this kit can only be used as part of the overall clinical evaluation of the patient, and the clinical diagnosis should be comprehensively judged by combining clinical symptoms and other diagnostic methods.
- If the sample concentration is below the lower limit of the linear range, report it as <2.00 IU/mL, and if it is above the upper limit of the linear range, report it as >2500.00 IU/mL.

Determination of Reference Interval

Reference Interval of Anti-IgE iClia assay is considered as <105.29 IU/mL for healthy people, which is established referring to literatures, based on the rest results of more than 60 clinical samples.

Due to the differences in geography, race, gender or age, it is suggested each laboratory establish its own reference interval or conduct verification of the existing reference interval.

15. PERFORMANCE CHARACTERISTICS

- Assay results obtained in individual laboratories may vary from data presented in this product insert.

Limit of Blank (LoB)

- The Limit of Blank was determined in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP17-A requirements.
- The Limit of Blank is the 95th percentile value from $n > 20$ measurements of analyte free samples over several independent series. The Limit of Blank corresponds to the concentration below which analyte-free samples are found with a probability of 95%.
- The observed LoB value was <1.00 IU/ml.

Accuracy: The accuracy of Anti-IgE iClia was detected with 60 clinical specimen and compared with Roche CLIA. The co-relation co-efficient is ≥ 0.990 .

Precision

Intra Assay Variation

Within run variation was determined by 5 replicate measurements of two different Anti-IgE control sera (Low) and (High) in one assay in 3 different lots. The within assay variability is <10 %.

Inter Assay Variation

Between run variation was determined by 2 replicate measurements in 5 sequential days of two different control sera (Low) and (High) in 3 different lots. The between assay variability is <15.0 %.

Intra-Assay, n=5			Inter-Assay, n=5×2		
Control	Mean (IU/ml)	CV	Sample	Mean (IU/ml)	CV
1	10.04	5.77	1	9.99	4.77
2	205.00	5.65	2	202.14	3.10

Inter machine(CLIA Analyzer) Variation

Between machine variation was determined by 2 replicate measurements of two different Anti-IgE control sera (Low) and (High) in 4 different CLIA Analyzer. The between machine variability is <15 %.

Linearity

The linearity was determined in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP6-A requirements.

The linearity range was verified by more than 6 concentration levels which encompass or be equal to the minimum and the maximum values of linearity range. The linearity was verified using sample diluted linearity (high to low conc. covering the measuring range) in duplicate in single run for each lot.

The Anti-IgE iClia kit has been demonstrated to be linear from 2.00 IU/ml. to 2500.00 IU/ml., regression (R^2) of more than ≥ 0.990 .

Specificity

Interference

A study was performed based on guidance from CLSI EP7-A2.

Potentially interfering substances were evaluated to determine whether Anti-IgE

concentrations were affected when using the Anti-IgE iClia assay kit. Samples containing the potential interferents were prepared at two Anti-IgE concentrations. The samples were assayed, and the Anti-IgE concentrations of the spiked samples were compared to the reference samples.

Potential Interferent	Interferent Concentration	% Interferent Bias
Bilirubin	20 mg/dL	<10%
Hb	500 mg/dL	<10%
Intralipid	1000 mg/dL	<10%
Total protein	10 g/dL	<10%
RF	1000IU/mL	< 10%
ANA	400AU/mL	< 10%
HAMA	600 ng/mL	<10%

15. LIMITATION OF THE TEST

- Results should be used in conjunction with other data; e.g., symptoms, results of other tests, and clinical impressions.
- If the Anti-IgE results are inconsistent with clinical evidence, additional testing is recommended.
- Specimens from patients who have received preparations of mouse monoclonal antibodies for diagnosis or therapy may contain human anti-mouse antibodies (HAMA). Such specimens may show either falsely elevated or depressed values when tested with assay kits that employ mouse monoclonal antibodies. Additional information may be required for diagnosis.
- Heterophilic antibodies in human serum can react with reagent immunoglobulins, interfering with in vitro immunoassays. Patients routinely exposed to animals or to animal serum products can be prone to this interference, and anomalous values may be observed. Additional information may be required for diagnosis.
- Rheumatoid factor (RF) in human serum can react with reagent immunoglobulins, interfering with in vitro immunoassays. Additional information may be required for diagnosis.

17. LIMITED EXPRESSED WARRANTY DISCLAIMER

The manufacturer limits the warranty to the test kit, as much as that the test kit will function as an in-vitro diagnostic assay within the limitations and specifications as described in the product instruction for use, when used strictly in accordance with the instructions contained therein. The manufacturer disclaims any warranty expressed or implied including such expressed or implied warranty with respect to merchantability, fitness for use or implied utility for any purpose. The manufacturer's liability is limited to either replacement of the product or refund of the purchase price of the product and in no case liable to for claim of any kind for an amount greater than the purchase price of the goods in respect of which damages are likely to be claimed.

The manufacturer shall not be liable to the purchaser or third parties for any injury, damage or economic loss, howsoever caused by the product in the use or in the application thereof.

18. REFERENCES:

1. Hirohisa S., Teruko I., Kimishige I. Mast Cells and IgE: From History to Today. Allergol. Int., 2013, 62, 3-12.
2. Raif S. G., Human IgE. J. Allergy Clin. Immunol., 1984, 74, 109-120.
3. Chang K.-L., Yang Y.-H., Yu H.-H., et al. Analysis of serum total IgE, specific IgE and eosinophils in children with acute and chronic urticaria. J. Microbiol. Immunol. Infect., 2013, 46, 53-58.
4. Hannah J. G., Brian J. S., Andrew J. B., et al. The Biology of IgE and the Basis of Allergic Disease. Annu. Rev. Immunol. 2003, 21, 579-628.
5. Kim W. S., Kawakami Y., Kasakura K., et al. Recent advances in mast cell activation and regulation. F1000 Research, 2020, 9, 196.
6. Lawren C. W., Ali A. Z. The production and regulation of IgE by the immune system. Nat. Rev., 2014, 14, 247-259.
7. Rudolf V., Steven A., Tanja B., et al. The Immunoglobulin E-Allergen Interaction: A Target for Therapy of Type I Allergic Diseases. Int. Arch. Allergy Immunol. 1998, 16, 167-176.