1. SUMMARY AND EXPLANATION OF THE TEST
The available research data indicates that Acquired Immunodeficiency Syndrome (AIDS) is caused by HIV virus transmitted by sexual contact, exposure to blood or certain blood products. By an infected mother to her child during pre-natal and post-natal period. The two type of HIV viruses (HIV-1 & HIV-2) have been isolated from patients with AIDS and AIDS related complex (ARC). These two viruses belong to the retrovirus group and are slow viruses.

The serological events following HIV infection are represented graphically in fig.1. In individuals infected with HIV, antigen appears first before anti-HIV but due to seroconversion, the antigen is lost and antibody develops within 1-2 months after infection and thereby the level of the antibody increases.

MICROLISA-HIV is developed to detect anti-HIV ENV (envelope) antibodies to HIV-1 and / or HIV-2 with equal reactivity. It has been observed that the core protein of HIV-1 and HIV-2 show cross reactivity whereas envelope proteins are more type specific and moreover antibodies against the envelope gene products can be found in almost all infected people. Microlisa-HIV has been developed and designed to be extremely sensitive and specific using recombinant proteins (gp41, C terminus of gp120 and gp36) representing the immunodominant regions of HIV-1 & HIV-2 envelope gene structure respectively.

2. INTENDED USE
Microlisa-HIV is an in-vitro qualitative enzyme immunoassay for the detection of antibodies to HIV-1 and / or HIV-2 in human serum or plasma. It is intended for screening of blood donors or other individuals at risk for HIV-1 and / or HIV-2 infection and for clinical diagnostic testing.

3. PRINCIPLE OF THE TEST
Microlisa HIV test is an enzyme immunoassay based on Indirect ELISA.

HIV envelope proteins proteins gp41, C terminus of gp 120 for HIV-1, and gp 36 for HIV-2 representing immunodominant epitopes are coated onto microtiter wells. Specimens and controls are added to the microtiter wells and incubated. Antibodies to HIV-1 and HIV-2 if present in the specimen, will bind to the specific antigens absorbed onto the surface of the wells. The plate is then washed to remove unbound material. Horseradish peroxidase (HRP) conjugated antihuman IgG is added to each well. This conjugate will bind to HIV antigen-antibody complex present. Finally substrate solution containing chromogen and hydrogen peroxide is added to the wells and incubated. A blue colour will develop in proportion to the amount of HIV-1 and / or HIV-2 antibodies present in the specimen. The colour reaction is stopped by a stop solution. The enzyme substrate reaction is read by ELA reader for absorbance at a wavelength of 450 nm. If the sample does not contain HIV-1 or HIV-2 antibodies then enzyme conjugate will not bind and the solution in the wells will be either colourless or only a faint background colour develops.

4. DESCRIPTION OF SYMBOLS USED
The following are graphical symbols used in or found on J. Mira diagnostic products and packing. These symbols are the most common ones appearing on medical devices and their packing. They are explained in more detail in the British and European Standard EN ISO 15223-1:2016.

5. PACK SIZE
- 96 Tests

6. COMPONENTS IN EACH MICROLISA-HIV KIT

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microlisa-HIV Strip Plates</td>
<td>12 Strips (12 x 8 wells)</td>
</tr>
<tr>
<td>Sample Diluent</td>
<td>1 Bottle (20 ml)</td>
</tr>
<tr>
<td>Enzyme Conjugate Concentrate (100x)</td>
<td>1 Vial (0.25 ml)</td>
</tr>
<tr>
<td>Conjugate Diluent</td>
<td>1 Bottle (15 ml)</td>
</tr>
<tr>
<td>Wash Buffer Concentrate (25x)</td>
<td>1 Bottle (50 ml)</td>
</tr>
<tr>
<td>TMB Substrate</td>
<td>1 Bottle (10 ml)</td>
</tr>
<tr>
<td>TMB Diluent</td>
<td>1 Bottle (10 ml)</td>
</tr>
<tr>
<td>Buffer solution containing H2O2 with preservative</td>
<td>1 Vial (2.0 ml)</td>
</tr>
<tr>
<td>Control —</td>
<td>Ready to use, normal human serum negative for HIV, HCV, and HBsAg with preservative.</td>
</tr>
<tr>
<td>Control +</td>
<td>Ready to use, inactivated and diluted human serum; positive for HIV antibodies and non-reactive for HBsAg and HCV with preservative.</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>1 Bottle (15 ml)</td>
</tr>
<tr>
<td>Plate Seals</td>
<td>Ready to use, 1N sulfuric acid.</td>
</tr>
</tbody>
</table>

7. ADDITIONAL MATERIAL AND INSTRUMENTS REQUIRED
- Micropipettes and micropipet tips
- Elisa reader
- Distilled or deionized water
- Sodium hypochlorite solution
- Paper towels or absorbent tissue
- Timer
- Elisa washer
- Incubator 37°C
- Vortex Mixer
- Disposable gloves
- Glassware

8. SPECIMEN COLLECTION & PREPARATION
1. Only human serum or plasma samples should be used for the test. While preparing serum samples, remove the serum form the clot as soon as possible to avoid hemolysis. Fresh serum/plasma samples are preferred.
2. Specimens should be free of microbial contamination and may be stored at 2-8°C for one week, or frozen at -20°C or lower. Avoid repeated freezing and thawing.
3. Use of heat inactivated, icteric hyperlipemic and hemolyzed and Icteric hyperlipemic samples should be avoided as may give erroneous results.

9. SPECIMEN PROCESSING
(A) FROZEN SAMPLE
Microlisa-HIV test is best used with fresh samples that have not been frozen and thawed. However most frozen samples will perform well if the procedure suggested below is followed. Allow the frozen sample to thaw in a vertical position in the rack. Do not shake the sample. This allows particles to settle to the bottom. If a centrifuge is available, the sample should be centrifuged. (10,000 rpm for 15 min.)

(B) TRANSPORTATION
If the specimen is to be transported, it should be packed in compliance with the current Government regulations regarding transport of aetiological agents.
10. WARNING & PRECAUTION

CAUTION: THIS KIT CONTAINS MATERIALS OF HUMAN ORIGIN. NO TEST METHOD CAN OFFER COMPLETE ASSURANCE THAT HUMAN BLOOD PRODUCTS WILL NOT TRANSMIT INFECTION. NEGATIVE CONTROL, POSITIVE CONTROL & ALL THE SAMPLES TO BE TESTED SHOULD BE HANDLED AS THOUGH CAPABLE OF TRANSMITTING INFECTION.

1. The use of disposable gloves and proper biohazardous clothing is STRONGLY RECOMMENDED while running the test.
2. In case there is a cut or wound in hand, DO NOT PERFORM THE TEST.
3. Do not smoke, drink or eat in areas where specimens or kit reagents are being handled.
4. Tests are for in vitro diagnostic use only and should be run by competent person only.
5. Do not pipette by mouth.

6. All materials used in the assay and samples should be decontaminated in 5% sodium hypochlorite solution for 30-60 min. before disposal or by autoclaving at 121°C at 15psi for 60 min. Do not autoclave materials or solution containing sodium hypochlorite. They should be disposed off in accordance with established safety procedures.
7. Wash hands thoroughly with soap or any suitable detergent, after the use of the kit.
8. Spills should be decontaminated promptly with Sodium Hypochlorite or any other suitable disinfectant.
9. Controls and Sample diluent contain Sodium Azide as a preservative. If these materials are to be disposed off through a sink or other common plumbing systems, flush with generous amounts of water to prevent accumulation of potentially explosive compounds. In addition, consult the manual guideline “Safety Management No. CDC-22”, Decontamination of Laboratory Sink Drains to remove Azide salts” (Centre for Disease Control, Atlanta, Georgia, April 30, 1976.)
10. Stop solution contains sulfuric acid. If sulfuric acid comes in contact with the skin, wash thoroughly with water. In case of contact with eyes, flush with excess of water.

11. PRECAUTIONS FOR USE

Optimal assay performance requires strict adherence to the assay procedure described in the manual.

1. Do not use kit components beyond the expiration date which is printed on the kit.
2. Bring all the reagents & samples to room temperature (20-30ºC) before use.
3. Do not combine reagents from different batches, as they are optimised for individual batch to give best results.
4. Avoid microbial contamination of reagents. The use of sterile disposable tips is recommended while removing aliquots from reagent bottles.
5. Due to interchange of caps the reagents may get contaminated. Care should be taken while handling the reagents to avoid contamination of any sort.
6. Use freshly collected, clean serum samples for assay. Try to avoid turbid, lipemic serum or plasma samples.
7. Use a separate tip for each sample and then discard it as biohazardous waste.
8. All pipetting steps should be performed with utmost care and accuracy. Cross contamination between reagents and samples will invalidate results.
9. Do not allow microwells to dry once the assay has started.
10. Run negative and positive controls in each assay to evaluate validity of the kit.
11. Incubation time should not vary by more than + 2 min.
12. Prevent evaporation during sample incubation by covering the strips with strip sealer. Remove sealer before washing.
13. Distilled or deionised water must be used for wash buffer preparation.
14. Thorough washing of the wells is critical to the performance of the assay. Overflowing of reagents or washing to adjacent wells must be prevented during washing, which may lead to incorrect results due to carry over effect.
15. Take care while preparing working substrate solution and use separate tips for TMB Substrate and TMB diluent.
16. Prepare working substrate solution just 10 minutes prior to adding in the wells.
17. If blue colour or white particles appear in working substrate solution then do not use it. Take fresh containers and tips and prepare it again.
18. Avoid strong light exposure during the assay.
19. Ensure that the microwell strips are levelled in the strip holder. Before reading, wipe the bottom of the microwell strips carefully with soft, absorbent tissue to remove any moisture.
20. If available, a microwell reader which contains a reference filter with settings at 620 or 630 nm should be used. Use of a reference filter minimises interference due to microwells that are opaque, scratched or irregular. However, if a reference filter is unavailable, the absorbance may be read at 450 nm without a reference filter.
21. In case of any doubt the run should be repeated.

12. PREPARATION OF REAGENTS

Prepare the following reagents before or during assay procedures. Reagents and samples should be at room temperature (20-30ºC) before beginning the assay and can remain at room temperature during testing. Return reagents to 2-8ºC after use. All containers used for preparation of reagents must be cleaned thoroughly and rinsed with distilled or deionized water. Prewarm the incubator at 37ºC.

12.1. Microtasa-HIV Strip
Bring foil pack to room temperature (20-30ºC) before opening to prevent condensation on the microwell strips.

a. Break-off the required number of strips needed for the assay and place in the well holder. Take the strip holder with the required number of strips, taking into account that two negative & three positive controls should be included in the run while opening the fresh kit. However for one or two strips, one negative and two positive controls and for more strips at least two negative and three positive controls should be included in each subsequent runs.

b. Unused wells should be stored at 2-8ºC, with dessicant in a aluminium pouch with clip & rod. Microwells are stable for 30 days at 2-8ºC from the date of opening of sealed pouch, when stored with dessicant along with clip & rod.

Caution: Handle microwell strip with care. Do not touch the bottom exterior surface of the wells.

12.2. Sample Preparation:

MICROWELL DILUTION:

a. Pipette 100µl of sample into in to the microwell.

b. Add 10 µl of serum sample to be tested.

c. Ensure thorough mixing of the sample to be tested.

12.3. Preparation of Wash Buffer:

a. Check the buffer concentrate for the presence of salt crystals. If crystals are present in the solution, resolubilize by warming at 37ºC until all crystals dissolve.

b. Prepare at least 50 ml. (2ml. concentrated buffer with 48 ml. water) of buffer for each microlisa strip used. Mix well before use.

c. Mix 20 ml. 25 X wash buffer concentrate with 480 ml. of distilled or deionized water. Working Wash Buffer is stable for 2 months when stored at 2-8ºC.

12.4. Preparation of Working Conjugate:

Dilute conjugate concentrate 1:100 in conjugate diluent. Do not store working conjugate. Prepare a fresh dilution for each assay in a clean glass vessel. Determine the quantity of working conjugate solution to be prepared from table given below. Mix solution thoroughly before use.

<table>
<thead>
<tr>
<th>No. of Strips</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Wells</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>Enzyme Conjugate Concentrate (µl)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>Conjugate Diluent in (ml)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: In case any precipitate is found in conjugate diluent/sample diluent, it should be allowed to settle and the supernatant can be used for the test. The precipitate does not interfere with the working of the kit.

12.5. Preparation of working substrate solution :

Mix TMB substrate and TMB Diluent in 1:1 ratio to prepare working substrate.

Do not store working substrate. Prepare a fresh dilution for each assay in a clean plastic/glass vessel. Determine the quantity of working substrate solution to be prepared from table. Mix solution thoroughly before use.

<table>
<thead>
<tr>
<th>No. of Strips</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Wells</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>TMB Substrate (ml)</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>TMB Diluent (ml)</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

13. WASH PROCEDURE:

1. Incomplete washing will adversely affect the test outcome.
2. Aspirate the well contents completely into a waste container. Then fill the wells completely with wash buffer avoiding overflow of buffer from one well to another and allow to soak (approx. 30 seconds). Aspirate completely and repeat the wash and soak procedure 4 additional times for a total of 5 washes.
3. Automated washer if used should be well adjusted to fill each well completely without
over filling
4. Tap upside down on absorbent sheet till no droplets appear on the sheet, taking care not
to dislodge the wells.

14. TEST PROCEDURE
Once the assay has started, complete the procedure without interruption. All the reagents
should be dispensed in the centre of the well and the tip of the pipette should not touch the wall
of the microwell.
Fit the strip holder with the required number of Microlisa-HIV strips. The sequence of the
procedure must be carefully followed. Arrange the assay control wells so that well A-1 is the
reagent blank. From well A-1 arrange all controls in a horizontal or vertical configuration.
Configuration is dependent upon reader software.
1. Add 100 µl sample diluent to A-1 well as blank.
2. Add 100µl Negative Control in each well no. B-1 & C-1 respectively. Negative Control is
ready to use and hence no dilution is required.
3. Add 100µl Positive Control in D-1, E-1 & F-1 wells. Positive Control is ready to use and
hence no dilution is required.
4. Add 100 µl sample diluent in each well starting from G-1 followed by addition of 10µl
sample. (Refer MICROWELL DILUTION)
5. Apply cover seal.
6. Incubate at 37°C + 2ºC for 30 min. + 2 min.
7. While the samples are incubating, prepare Working Wash Solution and Working
Conjugate as specified in Preparation of Reagents.
8. Take out the plate from the incubator after the incubation time is over and, wash the wells
5 times with Working Wash solution according to the wash procedure given in the
previous section (wash procedure).
9. Add 100 µl of Working Conjugate Solution in each well including A-1.
10. Apply cover seal.
11. Incubate at 37°C + 2ºC for 30 min. + 2 min.
12. Aspirate and wash as described in step no. 8.
13. Add 100 µl of working substrate solution in each well including A-1.
14. Incubate at room temperature (20 - 30ºC) for 30 min. in dark.
15. Add 100 µl of stop solution.
16. Read absorbance at 450 nm within 30 minutes in ELISA READER after blanking A-1 well.
(Chromatic absorbance measurement with a reference wavelength 600 - 650 nm is
recommended when available).

15. SUMMARY OF PROCEDURE*

<table>
<thead>
<tr>
<th>Dilute Serum Sample</th>
<th>Sample</th>
<th>Sample Diluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add control (RTU)*</td>
<td>100µl</td>
<td>100µl</td>
</tr>
<tr>
<td>Cover the plate & incubate</td>
<td>30 mins. at 37ºC</td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>5 Cycles</td>
<td></td>
</tr>
<tr>
<td>Prepare working conjugate</td>
<td>No. of strips</td>
<td>Exc. conc. (µl)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 20 30 40 50 60 70 80 90 100 110 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enzyme Conc. (mM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Add Conjugate</td>
<td>100µl</td>
<td></td>
</tr>
<tr>
<td>Cover the plate & incubate</td>
<td>30 mins. at 37ºC</td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>5 Cycles</td>
<td></td>
</tr>
<tr>
<td>Prepare Chromogenic Substrate</td>
<td>No. of strips</td>
<td>Exc. Conc. (µl)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMB Substrate (mM) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMB Enzyme Conc. (mM) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0</td>
</tr>
<tr>
<td>Add Substrate</td>
<td>100µl</td>
<td></td>
</tr>
<tr>
<td>Incubate in dark</td>
<td>30 mins. at Room Temp.</td>
<td></td>
</tr>
<tr>
<td>Add Stop Solution</td>
<td>100µl</td>
<td></td>
</tr>
<tr>
<td>Read Results</td>
<td>450 nm./630 nm.</td>
<td></td>
</tr>
</tbody>
</table>

* RTU - Ready to use

16. CALCULATION OF RESULTS

Abbreviations
NC - Absorbance of the Negative Control
NCx - Mean Negative Control
PC - Absorbance of the Positive Control
PCx - Mean Positive Control

TEST VALIDITY:
Blank acceptance Criteria
Blank must be < 0.100 in case of differential filter being used. In case differential filter is not
available in the reader the blank value may go higher.

Negative Control Acceptance Criteria:
NC must be < 0.150. If it is not so, the run is invalid and must be repeated.

Positive Control Acceptance Criteria:
1. PC must be > 0.50
2. Determine the mean (PCR) value. If one of these three positive control values is outside of these
limits, recalculate PCR based upon the two acceptable positive control values.
3. If two of the three positive control values are outside the limits, the assay is invalid and the
test must be repeated.

CUT OFF VALUE

<table>
<thead>
<tr>
<th>Absorbance (O.D.)</th>
<th>NC</th>
<th>PC</th>
<th>D1</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.042</td>
<td>1.421</td>
<td>1.392</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.082</td>
<td>3 Wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCx = 0.082/2 = 0.041
PCR = 4.211/3 = 1.403

The cut off value is calculated by adding Mean Negative Control (NCx) and Mean Positive Control (PCR) as calculated above and the sum is divided by 6.

Cut off Value = NCx + PCR

PCx = 1.403

Cut off Value = 0.041 + 1.403 = 1.444 = 0.240

17. INTERPRETATION OF RESULTS

1. Test specimens with absorbance value less than the cut off value are non-reactive and
may be considered as negative for anti-HIV.
2. Test specimens with absorbance value greater than or equal to the cut off value are
reactive for Anti-HIV by Microlisa-HIV.

Note: Test specimens with absorbance value within 10% below the cut off should be
considered suspect for the presence of antibodies and should be restested in duplicate.

3. Specimens with absorbance value equal to or greater than the cut off value are
considered initially reactive by the criteria of Microlisa-HIV. Original specimen should be
restested in duplicate.
4. If both duplicate retest sample absorbance value is less than cut off value, the specimen is
considered non reactive.
5. If any one of the duplicates retest sample absorbance value is equal to or greater than
the cut off or both duplicate retest value are equal to or greater than the cut off, the specimen
is considered reactive by the criteria of Microlisa HIV. Further confirmation by other EIA
assays or confirmation assays including Western Blot or PCR is recommended.

18. LIMITATIONS OF THE ASSAY

1. Microlisa-HIV assay is designed for testing antibodies against HIV-1 and/or HIV-2 in human
serum and plasma. Other body fluids and pooled samples are not recommended in this assay.
Any result derived from the test of any other body fluid or from test of pooled serum/plasma
may not be interpreted correctly based on the current criteria. In establishing infection of HIV-1
and/or HIV-2 or, in evaluating patients with AIDS symptoms, Microlisa-HIV testing alone cannot
be used to diagnose AIDS even if antibodies against HIV are present in human serum or
plasma. A negative test result at any time does not preclude the possibility of exposure to, or
infection with HIV. This is only a screening test. All samples detected reactive must be
confirmed by using Western Blot. Therefore for a definitive diagnosis, the patient’s clinical
history, symptomatology as well as serological data should be considered. The results should
be reported only after complying with the above procedure.

2. Some samples show cross reactivity for HIV antibodies. Following factors are found to
cause false positive HIV antibody test results: Naturally occurring antibodies, Passive
immunization, Leprosy, Tuberculosis, Mycobacterium avium, Herpes simplex,
Hypergammaglobulinemia, Malignant neoplasms, Rheumatoid arthritis, Tetanus vaccination,
Autoimmune diseases, Blood Transfusion, Multiple myeloma, Haemophilia, Heat treated
specimens, Lipemic serum, Anti-nuclear antibodies, T-cell eucocyte antigen antibodies,
Epstein Barr virus, HLA antibodies and other retroviruses.

19. PERFORMANCE CHARACTERISTICS

Sensitivity and Specificity studies were carried out on samples fresh, as well as frozen, from
low risk as well as high risk groups. Performance of the test with reference to sensitivity and
specificity has been determined by NATIONAL HIV REFERENCE CENTRES of Govt. of India
and WHO Collaborating Centre, using various testing panels.
These evaluations indicates the following Sensitivity and Specificity:

<table>
<thead>
<tr>
<th>Samples</th>
<th>Indian**</th>
<th>European*</th>
<th>African*</th>
<th>Worldwide*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.5%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

** Evaluation Reports of National HIV Reference Laboratories of Govt. of India (CMC Vellore). Drug Controller General (India), Directorate General of Health Services, Govt. of India, New Delhi. (Letter dated 8th May 1997).

Seven HIV-O sera were included in reference serum panel. Microlisa-HIV has detected all the seven HIV-O positive samples are reactive thereby confirming its 100% Sensitivity & Specificity for HIV-O positive samples as well.

A low performance and mixed panel from BBI (Boston Biomedica Inc.) were also tested with Microlisa-HIV were identical with the Western Blot data provided by BBI for the above mentioned low performance and mixed panel.

This information is provided for the Community Enquiring for an independent evaluation other than company’s in house evaluation. It is not for commercial or promotion purpose.

Precision: Within-run and between-run precisions have been determined by testing 10 replicates of three specimens - a negative, a weak positive and a strong positive. The C.V. (%) of negative, weak positive and strong positive values were within 10%.

2.0. LIMITED EXPRESSED WARRANTY DISCLAIMER

The manufacturer limits the warranty to the test kit, as much as as the test kit will function as an in-vitro diagnostic assay within the limitations and specifications as described in the product instruction-manual, when used strictly in accordance with the instructions contained therein. The manufacturer disclaims any warranty expressed or implied including such express or implied warranty with respect to merchantability, fitness for use or implied utility for any purpose. The manufacturer’s liability is limited to either replacement of the product or refund of the purchase price of the product and in no case liable to for claim of any kind for an amount greater than the purchase price of the goods in respect of which damages are likely to be claimed.

The manufacturer shall not be liable to the purchaser or third parties for any injury, damage or economic loss, howsoever caused by the product in the use or in the application thereof.

NOTICE: Every effort is made to supply ordered consignment as per the sample submitted but due to continuous development, the company reserves the right to improve/change any specifications/components without prior information/notice to the buyer.

21. REFERENCES

1. Busch M. P. et al. Transfusion 31 (2): 129 “Reliable Confirmation and Quantitation of Human Immunodeficiency Virus Type 1 Antibody using a Recombinant Antigen Immunoblot Assay.”

22. TROUBLE SHOOTING CHART

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control out of validation limit</td>
<td>a) Incorrect temperature low or pipetting</td>
<td>Check procedure & repeat assay</td>
</tr>
<tr>
<td></td>
<td>b) Improper preparation of reagents, error of dilution, improper mixing of reagents.</td>
<td>Check procedure & repeat assay</td>
</tr>
<tr>
<td></td>
<td>c) Cross contamination</td>
<td>Pipette carefully and do not interchange caps. Repeat assay</td>
</tr>
<tr>
<td></td>
<td>d) Incorrect reading filter or readings without blanking the reader.</td>
<td>Check the filter used. It should be 450nm. If no reference filter is used absorbance will increase.</td>
</tr>
<tr>
<td></td>
<td>e) Interference in the optical pathway</td>
<td>Check the reader. Clean or dry the bottom of micro wells, check for bubbles & repeat the readings</td>
</tr>
</tbody>
</table>

For in-vitro diagnostic use only, not for medicinal use

J. MITRA & CO. PVT. LTD.
A 180-181, Okhla Indi. Area, Phase-1, New Delhi-110 020, INDIA
Ph: +91-11-47130300, 47130500, 26818971-73
e-mail: jmitra@jmitra.co.in Internet: www.jmitra.co.in